## Supporting Information:

# Equilibrium Structures of Pyrazine, s-Triazine, and s-Tetrazine 

Jürgen Breidung and Walter Thiel

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der
Ruhr, Germany

Table S1. Computed Vibrational Contributions $\Delta X_{\text {vib }}(\mathbf{X}=\mathbf{A}, \mathrm{B}, \mathrm{C} ; \mathbf{M H z}$ ) to the GroundState Rotational Constants $X_{0}$ and Rotational $g$ Tensors (dimensionsless) of Selected Isotopologues of Pyrazine ${ }^{a, b}$

| Isotopologue $^{c, d}$ | $-\Delta A_{v i b}$ | $-\Delta B_{v i b}$ | $-\Delta C_{v i b}$ | $g_{a a}$ | $g_{b b}$ | $g_{c c}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $12-1-14$ | 52.44 | 39.31 | 23.66 | -0.08830 | -0.1330 | +0.03192 |
| $13-1-14$ | 48.18 | 37.57 | 22.25 | -0.08289 | -0.1300 | +0.03060 |
| $12-1-15$ | 52.11 | 36.92 | 22.79 | -0.08830 | -0.1271 | +0.03117 |
| $13-1-15$ | 47.86 | 35.32 | 21.45 | -0.08289 | -0.1244 | +0.02991 |
| $12-2-14$ | 37.44 | 39.20 | 19.76 | -0.1239 | -0.07250 | +0.02793 |
| $13-2-14$ | 35.74 | 36.45 | 18.64 | -0.1213 | -0.06881 | +0.02691 |
| $12-2-15$ | 35.37 | 38.93 | 19.14 | -0.1187 | -0.07250 | +0.02735 |
| $13-2-15$ | 33.79 | 36.18 | 18.06 | -0.1163 | -0.06881 | +0.02637 |

${ }^{a}$ See footnote $a$ in Table 4 of the main paper.
${ }^{b}$ The $\Delta X_{\text {vib }}$ values were computed at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{VTZ}$ level of theory at the associated optimized equilibrium geometry, and the $g$ factors were calculated at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{AVTZ}$ level at the best estimated equilibrium geometry (see Table 5 of the main paper). ${ }^{c}$ The entries 12-1-14 and 12-2-14 stand for ${ }^{12} \mathrm{C}_{4} \mathrm{H}_{4}{ }^{14} \mathrm{~N}_{2}$ and ${ }^{12} \mathrm{C}_{4} \mathrm{D}_{4}{ }^{14} \mathrm{~N}_{2}$, respectively, with a completely analogous meaning of the other entries.
${ }^{d}$ When replacing all H by D atoms, the $\mathrm{a}-$ and b -axes are interchanged in the isotopic species listed here (in the parent species, the a -axis passes through both N atoms). This holds true for the best estimated equilibrium geometry (see Table 5 of the main paper). It also holds true for the equilibrium geometry optimized at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{VTZ}$ level of theory (see Table 5 of the main paper), except for the 12-2-15 $\left({ }^{12} \mathrm{C}_{4} \mathrm{D}_{4}{ }^{15} \mathrm{~N}_{2}\right)$ isotopologue. Nevertheless, in this exceptional case the corresponding entries for $-\Delta A_{v i b}$ and $-\Delta B_{v i b}$ were switched as if the a- and b-axes were interchanged, in order to make the whole table consistent with the situation at the best estimated geometry.

Table S2. Computed Vibrational Contributions $\boldsymbol{\Delta} X_{\text {vib }}(\mathbf{X}=\mathbf{A}, \mathrm{B}, \mathrm{C} ; \mathbf{M H z}$ ) to the GroundState Rotational Constants $X_{0}$ and Rotational $g$ Tensors (dimensionsless) of Selected Isotopologues of s-Tetrazine ${ }^{a, b}$

| Isotopologue $^{c, d}$ | $-\Delta A_{v i b}$ | $-\Delta B_{v i b}$ | $-\Delta C_{v i b}$ | $g_{a a}$ | $g_{b b}$ | $g_{c c}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $12-1-14$ | 58.00 | 44.10 | 25.87 | -0.1178 | -0.1891 | +0.00982 |
| $13-1-14$ | 55.09 | 43.46 | 25.10 | -0.1129 | -0.1891 | +0.00962 |
| $12-1-15$ | 55.46 | 40.28 | 24.11 | -0.1151 | -0.1765 | +0.00937 |
| $13-1-15$ | 52.74 | 39.67 | 23.41 | -0.1104 | -0.1765 | +0.00918 |
| $12-2-14$ | 44.56 | 47.72 | 23.48 | -0.1891 | -0.1025 | +0.00916 |
| $13-2-14$ | 43.89 | 45.52 | 22.78 | -0.1891 | -0.09876 | +0.00899 |
| $12-2-15$ | 40.69 | 45.84 | 21.98 | -0.1765 | -0.1004 | +0.00876 |
| $13-2-15$ | 40.05 | 43.76 | 21.34 | -0.1765 | -0.09684 | +0.00860 |

${ }^{a}$ See footnote $a$ in Table 4 of the main paper.
${ }^{b}$ The $\Delta X_{\text {vib }}$ values were computed at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{VTZ}$ level of theory at the associated optimized equilibrium geometry, and the $g$ factors were calculated at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{AVTZ}$ level at the best estimated equilibrium geometry (see Table 6 of the main paper).
${ }^{c}$ The entries 12-1-14 and 12-2-14 stand for ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}{ }^{14} \mathrm{~N}_{4}$ and ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{2}{ }^{14} \mathrm{~N}_{4}$, respectively, with a completely analogous meaning of the other entries.
${ }^{d}$ When replacing both H by D atoms, the a - and b -axes are interchanged in the isotopic species listed here (in the parent species, the a-axis passes through the midpoints of both $\mathrm{N}-\mathrm{N}$ bonds). This holds true for both the best estimated equilibrium geometry and the equilibrium geometry optimized at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{VTZ}$ level of theory (see Table 6 of the main paper).

Table S3. Computed Equilibrium Geometries (pm, deg) of Water and Formaldehyde

|  |  | $\mathrm{H}_{2} \mathrm{O}$ |  |  |  |  |  |  |  |  | $\mathrm{H}_{2} \mathrm{CO}$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Method | Basis | $r_{e}(\mathrm{OH})$ | $\theta_{e}(\mathrm{HOH})$ |  | $r_{e}(\mathrm{CH})$ | $r_{e}(\mathrm{CO})$ | $\theta_{e}(\mathrm{HCO})$ |  |  |  |  |  |  |
| CCSD(T) | VDZ | 96.63 | 101.913 |  | 111.99 | 121.56 | 122.395 |  |  |  |  |  |  |
| CCSD(T) | VTZ | 95.94 | 103.582 |  | 110.33 | 120.96 | 121.907 |  |  |  |  |  |  |
| CCSD(T) | VQZ | 95.79 | 104.116 |  | 110.22 | 120.66 | 121.779 |  |  |  |  |  |  |
| CCSD(T) | AVTZ | 96.16 | 104.180 |  | 110.31 | 121.15 | 121.714 |  |  |  |  |  |  |
| CCSD(T) | AWCVQZ | 95.81 | 104.490 |  | 110.07 | 120.50 | 121.691 |  |  |  |  |  |  |
| DKH2-CCSD(T) | AVTZ-DK | 96.16 | 104.115 |  | 110.30 | 121.14 | 121.712 |  |  |  |  |  |  |
| DKH2-CCSD(T) | AWCVQZ-DK | 95.81 | 104.425 |  | 110.06 | 120.49 | 121.688 |  |  |  |  |  |  |
| CCSDT | VDZ | 96.64 | 101.908 |  | 112.02 | 121.57 | 122.404 |  |  |  |  |  |  |
| CCSDT | VTZ | 95.94 | 103.591 |  | 110.34 | 120.94 | 121.917 |  |  |  |  |  |  |
| CCSDT | VQZ | 95.79 | 104.125 |  | 110.23 | 120.64 | 121.789 |  |  |  |  |  |  |
| CCSDT(Q) | VDZ | 96.67 | 101.879 |  | 112.02 | 121.67 | 122.397 |  |  |  |  |  |  |
| CCSDT(Q) | VTZ | 95.97 | 103.553 |  | 110.34 | 121.06 | 121.906 |  |  |  |  |  |  |
| CCSD(T)-F12b | CVTZ-F12 | 95.76 | 104.520 |  | 110.05 | 120.39 | 121.683 |  |  |  |  |  |  |
| CCSD(T)-F12b | CVQZ-F12 | 95.74 | 104.573 |  | 110.03 | 120.37 | 121.677 |  |  |  |  |  |  |
| Best estimate ${ }^{a}$ |  | 95.77 | 104.49 |  | 110.03 | 120.44 | $121.68(116.64)^{b}$ |  |  |  |  |  |  |

${ }^{a}$ See text in the main paper. ${ }^{b} \theta_{e}(\mathrm{HCH})$ in parentheses.

